Partial Molar Isentropic Compressions of Alkyl Acetates in Water

Masao Sakurai,* Kunio Nakamura,[†] and Katsutoshi Nitta

Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060, Japan

Nobuo Takenaka

Research Institute for Electronic Science, Hokkaido University, Sapporo 060, Japan

Katsuya Mukae

Department of Industrial Chemistry, Kyushu Sangyo University, Fukuoka 813, Japan

The ultrasonic speeds in dilute aqueous solutions of eight alkyl acetates (methyl, ethyl, propyl, isopropyl, butyl, isobutyl, *sec*-butyl, and *tert*-butyl acetates) were measured at (5, 15, 25, 35, and 45) °C by means of a sing-around velocimeter. From these data and density results reported previously, the apparent molar isentropic compressions of the alkyl acetates were evaluated. The results were compared with those for more hydrophilic solutes, alcohols reported earlier, and the effects of chain lengthening and chain branching of the alkyl residues on the compression behavior were discussed.

Introduction

In a previous study, we have reported the partial molar volumes V_2 and their temperature dependences $\partial^2 V_2 / \partial T^2$ for eight alkyl acetates with varying alkyl chain length and branching (Sakurai et al., 1996). If the structure of water is enhanced in the vicinity of hydrophobic residues, as is well-known as hydrophobic hydration or iceberg formation (Franks and Reid, 1973), one might expect a characteristic volumetric behavior in aqueous solutions of these hydrophobic solutes. The results, however, showed that no peculiarity has been found in the temperature dependence of the partial molar volumes of these hydrophobic solutes in water. This is in clear contrast to more hydrophilic alcohol + water systems (Sakurai et al., 1994).

One of the decisive factors in determining the partial molar volume of solute is the intrinsic contribution due to a core volume of the solute. Such an intrinsic volume can be regarded as incompressible as a first approximation, and hence the partial molar compression can be a more sensitive measure of the solute—water interactions than the partial molar volume (Høiland, 1986). In this paper we present the results of the ultrasonic speed measurements for dilute aqueous solutions of the alkyl acetates at different temperatures. The partial molar isentropic compressions of the acetates in water were estimated and compared with the results for aqueous alcohol systems reported earlier (Sakurai et al., 1995).

Experimental Section

The ultrasonic speeds u in solution were measured at a frequency of about 5 MHz by using a laboratory-built singaround velocimeter (Sakurai et al., 1995). The cell constant was determined by measuring the pulse repetition periods

* Corresponding author. E-mail: sakurai@polymer.sci.hokudai.ac.jp. † Present address: Faculty of Dairy Science, Rakuno Gakuen University, Ebetsu 069, Japan.

Table 1.	Ultrasonic	Speeds	<i>u</i> (m·s ⁻¹)	in I	Pure	Alkyl
Acetates						-

		t/°C					
solutes	5	15	25	35	45		
MeAc	1243.25	1196.24	1149.53	1102.99	1056.88		
EtAc	1230.63	1184.37	1138.62	1093.28	1048.52		
PrAc	1253.03	1208.36	1164.27	1120.74	1077.86		
<i>i</i> -PrAc	1193.18	1147.65	1102.78	1058.52	1014.96		
BuAc	1275.24	1232.58	1190.48	1148.98	1108.15		
<i>i</i> -BuAc	1236.43	1193.30	1150.91	1109.01	1067.90		
s-BuAc	1221.81	1179.04	1136.81	1095.16	1054.13		
t-BuAc	1181.19	1136.56	1092.76	1049.71	1007.43		

for pure water at various temperatures. The ultrasonic speed in water was taken from the table reported by Grosso and Mader (1972). The temperature of the thermostat was maintained within ± 0.002 K, and the absolute temperature was determined to 0.02 K with a calibrated quartz thermometer. The accuracy of the ultrasonic speed measurements was believed to be better than ± 1 cm·s⁻¹ for the dilute solution range studied.

The alkyl acetates used were methyl (MeAc), ethyl (EtAc), propyl (PrAc), isopropyl (*i*-PrAc), butyl (BuAc), isobutyl (*i*-BuAc), *sec*-butyl (*s*-BuAc), and *tert*-butyl acetates (*t*-BuAc). The sources and purifications of the alkyl acetates are the same as in our previous work (Sakurai et al., 1996). The ultrasonic speeds in the pure alkyl acetates are given in Table 1. All solutions were prepared by successive addition of a weighed amount of a pure acetate into a speed-measuring cell containing a known quantity of solvent water (ca. 110–200 g). The accuracy of composition of the solution was estimated to be better than 0.1%. The densities ρ of the solutions used for the ultrasonic speed measurements were calculated from V_2° and B_V values reported previously (Sakurai et al., 1996).

Results and Discussion

The differences in ultrasonic speeds between solutions and pure water at various temperatures are listed in Table

Table 2.	Ultrasonic Speed Differences and Apparent	Molar Isentropic Compressi	ons of Alkyl Acetates in Dilute
Aqueous	Solutions		-

t/°C	m/	$u - u_1 / m \cdot s^{-1}$	$K_{\phi 2}/$	m/	$u - u_1 / m \cdot s^{-1}$	$K_{\phi 2}$ /	m/	$u - u_1 / m \cdot s^{-1}$	$K_{\phi 2}/$
<i>u</i> c	mor kg	111 3		M	III S Int S		mor kg	111 5	
5	0 028 51	2 064	-17 15	0 144 03	10 237	-16 27	0 230 52	16 141	-15 57
5	0.020 01	£.004 1 100	-16.02	0.144.05	12 508	-15.05	0.258.63	18 023	-15.35
	0.035 15	6 1 2 5	-16.67	0.177 10	14 284	-15 74	0.200 00	20 304	-15.19
	0.003 43	8 10 <i>1</i>	-16.43	0.203 23	14.204	13.74	0.232 31	20.304	15.12
15	0.114 87	0.134	-10.43	0 126 58	7 179	-2.04	0 227 52	19 794	-9.96
15	0.022 95	1.200	-3.74	0.130.30	7.470	-3.04	0.237 33	14.724	-2.30
	0.030 79	2.015	-3.40	0.106 40	9.147	-2.77	0.200 29	14.307	-2.23
	0.079.07	4.405	-3.34	0.200 71	10.654	-2.59	0.290 70	15.720	-2.03
05	0.108 15	5.941	-3.13	0 1 4 4 0 0	F 001	0.00	0.001.00	0.075	7 OF
25	0.025 19	1.059	6.19	0.144 30	5.881	0.88	0.231 93	9.275	7.25
	0.056 29	2.345	6.40	0.180 50	7.294	7.04	0.261 50	10.394	7.37
	0.090 61	3.725	6.70	0.206 54	8.291	7.18	0.290 93	11.477	7.53
05	0.11967	4.894	6.80	0 4 5 5 0 5	4 5 7 0	44.05	0.047.00	~ ~ ~ ~ ~	44.07
35	0.029 54	0.920	13.37	0.155 35	4.576	14.25	0.247 38	7.077	14.67
	0.061 84	1.885	13.73	0.185 /6	5.417	14.40	0.275 34	7.811	14.79
	0.088 83	2.678	13.90	0.218 69	6.309	14.55	0.304 56	8.567	14.90
45	0.126 82	3.774	14.09	0 1 40 70	0 750	00.44	0.000.07	4 0 0 0	00.04
45	0.022 81	0.468	19.98	0.140 76	2.758	20.44	0.232 37	4.369	20.84
	0.052 48	1.067	20.07	0.1// /1	3.428	20.59	0.268 39	4.976	20.97
	0.082 17	1.647	20.21	0.204 03	3.884	20.72	0.296 54	5.421	21.10
	0.112 60	2.230	20.33						
				E	Ethyl Aceta	ate			
5	0.034 74	3.171	-20.99	0.146 72	1 3.066	-19.50	0.229 54	20.103	-18.53
	0.064 81	5.892	-20.74	0.176 01	15.589	-19.18	0.261 03	22.724	-18.20
	0.091 82	8.269	-20.17	0.203 51	17.914	-18.82	0.287 48	24.891	-17.89
	0.118 94	10.667	-19.92						
15	0.028 64	2.048	-4.71	0.143 84	10.011	-3.64	0.222 21	15.157	-2.87
	0.059 34	4.203	-4.32	0.170.07	11.724	-3.26	0.249 45	16.879	-2.56
	0.088 77	6.257	-4.14	0.196 92	13.522	-3.12	0.281 66	18.905	-2.26
	0.115.81	8.086	-3.75						
25	0.026 88	1.451	7.74	0.132.22	6.945	8.47	0.220 35	11.331	9.01
~0	0.052 25	2.800	7.94	0.161 77	8.449	8.61	0.251 92	12.834	9.25
	0.081.01	4 303	8 19	0 191 75	9 940	8 80	0 281 73	14 237	9.45
	0 104 68	5 539	8 28	0110110	010 10	0100	0120110	111201	0110
35	0.027.13	1 095	16 69	0 138 14	5 339	17.54	0 224 31	8 386	18 17
00	0.052.02	2 074	16.94	0 166 27	6 363	17.73	0 251 14	9 286	18 38
	0.002.02	3 077	17 16	0 192 52	7 287	17.70	0 282 27	10 333	18.55
	0 108 22	4 221	17.10	0.102 02	1.201	17.01	0.202 21	10.000	10.00
45	0.100 22	0 726	24 33	0 123 40	3 2 5 2	25.28	0 232 45	5 765	26.06
10	0.02070	1 381	24.60	0.120 10	3 888	25.47	0.258.36	6 3 3 0	26.00
	0.073.85	2 002	24.80	0 175 78	1 493	25.68	0.280.30	6 885	26.35
	0.073 03	2 606	25.05	0.205.00	5 155	25.89	0.204 04	0.005	20.00
	0.007 20	2.000	20.00	0.200 00	0.100	20.00			
				P	ropyl Acet	ate			
5	0.016 22	1.808	-26.29	0.091 69	10.041	-24.97	0.150 80	16.274	-23.92
	0.035 31	3.916	-25.91	0.110 44	12.032	-24.60	0.171 01	18.352	-23.52
	0.053 91	5.961	-25.68	0.133 03	14.420	-24.23	0.193 56	20.649	-23.10
	0.072 36	7.955	-25.26						
15	0.019 58	1.744	-7.57	0.105 64	9.087	-5.75	0.167 81	14.176	-4.86
	0.040 08	3.526	-6.90	0.125 75	10.748	-5.43	0.188 24	15.803	-4.56
	0.061 76	5.383	-6.41	0.146 41	12.441	-5.14	0.204 67	17.088	-4.29
	0.083 93	7.263	-6.05						
25	0.020 24	1.392	7.06	0.096 45	6.424	8.22	0.153 60	10.026	8.90
	$0.038\ 61$	2.630	7.42	0.115 04	7.618	8.41	0.174 77	11.308	9.20
	0.058 53	3.965	7.60	0.134 51	8.836	8.68	0.191 07	12.293	9.38
	0.074 18	4.987	7.88						
35	0.017 07	0.886	18.22	0.096 01	4.766	19.38	0.152 65	7.342	20.17
	0.036 42	1.864	18.60	0.115 55	5.668	19.68	0.172 53	8.202	20.45
	0.057 53	2.905	18.96	0.133 60	6.489	19.93	0.188 03	8.832	20.76
	0.077 51	3.872	19.23						
45	0.016 42	0.602	27.75	0.075 60	2.623	28.78	0.134 17	4.455	29.54
	0.036 37	1.291	28.38	0.092 57	3.172	29.00	0.151 72	4.954	29.83
	0.054 01	1.912	28.41	0.111 39	3.763	29.24	0.170 89	5.484	30.12
	Isopronul Acatata								
5	0 018 90	2 013	-21 87	0 103 92	10 854	-20 54	0 160 68	16 562	-19.68
0	0.040 49	4,297	-21 62	0.122.15	12.698	-20 23	0.180 40	18.507	-19.37
	0.059 37	6 260	-21 17	0.142.48	14 747	-19 94	0.204 69	20 875	-18.99
	0.081 87	8 590	-20.84	0.116 10	11./1/	10.01	0.201 00	~0.010	10.00
15	0 017 85	1 499	-3 30	0 099 28	8 1 1 4	-2 12	0 161 18	12 941	-1 33
10	0.035.94	2 0/1	-2 15	0 129 19	9 010	-1 85	0 180 17	14 300	_1 11
	0.055 24	2.544 1 501	-9 80	0 139 00	11 947	-1.65	0 202 47	16 063	-0.89
	0 079 72	6 554	-2 39	0.100 00	11.671	1.00	0.202 11	10.000	0.02
	0.01016	0.001	w.00						

/°C	<i>m</i> / mol∙kg ^{−1}	$\frac{u-u_1}{\mathrm{m}\cdot\mathrm{s}^{-1}}$	$K_{\phi 2}/$ cm ³ ·mol ⁻¹ ·GPa ⁻¹	<i>m</i> / mol·kg ⁻¹	$\frac{u-u_1}{\mathrm{m}\cdot\mathrm{s}^{-1}}$	$K_{\phi 2}/$ cm ³ ·mol ⁻¹ ·GPa ⁻¹	<i>m</i> ∕ mol∙kg ^{−1}	$\frac{u-u_1}{\mathbf{m}\cdot\mathbf{s}^{-1}}$	<i>K</i> _{¢2} / cm³∙mol ^{−1} •GPa
	0			Iso	propyl Ace	etate			
25	0.022 14	1.428	10.49	0.100 38	6.256	11.63	0.165 25	10.039	12.44
	0.040 49	2.591	10.75	0.122 47	7.568	11.90	$0.189\ 61$	11.431	12.67
	0.060 26	3.817	11.10	0.144 37	8.862	12.10	0.212 91	12.718	12.95
	0.080 73	5.075	11.35						
5	0.019 82	0.940	21.58	0.081 59	3.753	22.29	0.145 66	6.479	23.06
	0.039 58	1.854	21.88	0.101 22	4.603	22.56	0.167 38	7.369	23.29
	0.059.63	2,773	22.04	0.124 23	5.583	22.83	0.188 29	8,196	23.54
5	0 019 48	0.637	30.72	0 075 83	2 343	31.67	0 137 45	4 071	32.33
0	0.038.61	1 233	31 13	0.095.26	2 906	31.87	0 157 74	1 591	32.58
	0.055 54	1.200	21.29	0.000 20	2 459	22.02	0.157 74	4.004	52.50
	0.055 54	1./4/	31.30	0.114 40	3.432	32.03			
				E	Butyl Aceta	ate			
5	0.006 47	0.863	-33.29	0.027 06	3.597	-32.94	0.042 92	5.677	-32.46
	0.013 28	1.775	-33.47	0.033 73	4.467	-32.59	0.047 45	6.266	-32.30
	0.019.06	2 545	-33.36						
	0.010.00	0.664	-12.96	0 026 73	2 875	-11 35	0.041.96	1 171	-10 77
,	0.000 03	1 497	11.60	0.020 73	2.075	10.01	0.041 30	5.045	10.77
	0.013 20	1.427	-11.69	0.034 77	3.715	-10.91	0.047 40	5.045	-10.00
	0.019 93	2.152	-11.61						
5	$0.005\ 31$	0.451	5.34	0.020 62	1.713	6.42	$0.035\ 31$	2.922	6.58
	0.013 74	1.154	5.88	0.028 01	2.322	6.51	0.044 46	3.656	6.87
5	0.009 73	0.627	18.92	0.022 37	1.412	19.65	0.036 59	2.300	19.76
	0.016 18	1.034	19.21	0.028 27	1.773	19.87	0.041 56	2.584	20.15
5	0 008 26	0.382	30.28	0 016 35	0 747	30 58	0 031 79	1 405	31 38
	0.000 20	0.562	20 83 20.50	0.010.00	1 0.20	20.30 20.30	av aso 0	1 505	21 72
	0.012 00	0.500	30.85	0.024 00	1.000	21 10	0.030 40	1.005	01.07
	0.012 90	0.589	30.60	0.026 98	1.202	31.19	0.038 91	1.685	31.87
				Iso	obutyl Ace	tate			
5	0.007 97	1.036	-30.32	0.031 66	4.091	-29.76	0.045 16	5.799	-29.18
	0.016 30	2.111	-29.98	0.040 34	5.187	-29.31	0.050 85	6.520	-29.05
	0.023 96	3.096	-29.77						
ś	0 007 64	0.802	-9.05	0 028 44	2 9 1 9	-759	0 046 02	4 705	-7.35
,	0.007 01	1 537	-8.03	0.020 11	2.010	-7.45	0.051.13	5 210	-7.26
	0.014 07	2 2 4 0	7.94	0.03370	J.4J7	7.45	0.031 13	5.215	1.20
	0.021 74	2.240	-7.84	0.040 40	4.147	-7.02	0 0 4 0 5 4	0 450	0.10
)	0.009 14	0.745	7.89	0.029 56	2.371	8.63	0.043 54	3.456	9.10
	0.014 57	1.180	8.19	$0.036\ 41$	2.905	8.87	$0.048\ 22$	3.824	9.13
	0.023 46	1.887	8.51						
5	0.007 65	0.468	21.27	0.027 74	1.658	22.04	0.038 32	2.280	22.17
	0.014 50	0.869	21.97	0.033 10	1.976	22.06	0.044 91	2.641	22.55
	0.020 60	1.240	21.81						
5	0 007 32	0.313	32.83	0 024 63	1 036	33 19	0 040 11	1 640	33 82
	0 000 99	0.416	33.46	0.028.96	1 216	33.99	0.041.24	1 664	34.12
	0.003 55	0.410	22 42	0.020.00	1.210	22.22	0.041 24	1 9 9 6	24.97
	0.014 30	0.030	32.43	0.029 13	1.223	33.22	0.045 57	1.020	34.27
	0.013 30	0.078	52.97	0.033 33	1.500	33.30			
-	0.000.00	1.940	96.40	Sec	-Butyl Ace	etate	0.059.69	0 400	94.90
)	0.009 96	1.240	-26.49	0.032 82	4.050	-25.43	0.052.08	0.403	-24.80
	0.017 46	2.177	-26.20	0.038 86	4.790	-25.21	0.060 97	7.454	-24.50
	0.025 13	3.111	-25.58	0.046 20	5.689	-25.12			
5	0.007 42	0.740	-5.37	0.027 84	2.734	-4.43	0.049 89	4.850	-3.83
	0.013 37	1.333	-5.36	0.035 62	3.463	-3.81	0.057 06	5.537	-3.73
	0 021 09	2.067	-429	0 043 53	4 2 2 9	-3.78			
	0.0021 00	0.467	11 74	0.010 00	2 076	11.84	0 049 55	3 686	19 49
,	0.000 17	1 095	11.74	0.025 12	2.010	19.90	0.043 33	4 9 9 9	10.46
	0.014 31	1.065	11.04	0.035 12	2.017	12.30	0.037 20	4.220	12.00
	0.020 32	1.543	11.56	0.044 24	3.296	12.36			
5	0.007 32	0.424	23.36	0.029 71	1.652	24.65	0.048 66	2.682	24.88
	0.014 01	0.802	23.74	0.036 59	2.016	24.92	0.054 24	2.959	25.19
	0.021 97	1.213	24.89	0.042 76	2.350	24.99			
i.	0.006.08	0 251	33.84	0 029 08	1 150	34 77	0 043 78	1 671	35.52
	0.015 38	0.613	34.63	0.026 75	1 / 29	35.13	0.050 12	1 871	35.98
	0.022 13	0.885	34.54	0.00070	1.120	00.10	0.000 12	1.071	00.00
	0.022 10	0.000	01.01	4	(D] A .				
	0 000 60	1 160	22.60	teri	t-Butyl Ace	etate	0.050.19	5 099	91 59
)	0.009 09	1.100	-22.09	0.033 38	4.002	-22.32	0.030 18	5.922	-21.52
	0.017 80	z.126	-22.50	0.041 42	4.912	-21.91	0.060 07	7.065	-21.24
	0.025 58	3.057	-22.55						
5	0.007 89	0.746	-2.04	0.031 31	2.925	-1.36	0.051 31	4.742	-0.76
	0.014 47	1.348	-1.16	0.038 08	3.539	-1.06	0.058 93	5.424	-0.53
	0.021 90	2.048	-1.40	0.045 19	4 175	-0.73			
	0 008 55	0.614	1/ 07	0 032 14	2 302	1/ 12	0 053 52	3 707	1/ /8
•	0.000 33	1 910	19.01	0.002 14	2.002	14.10	0.000 02	J. 1 J I	14.40
	0.010 00	1.210	13.91	0.039 40	2.020	14.20	0.059 42	4.214	14.48
_	0.023 82	1.723	13.72	0.045 99	3.279	14.29		_	
)	0.008 04	0.418	26.87	0.027 93	1.446	26.95	0.046 93	2.374	27.60
	0.014 32	0.734	27.28	0.035 51	1.831	27.06	0.050 51	2.540	27.76
	0.020 92	1.088	26.83	0.042 16	2.141	27.49			
			05 70	0 001 70	0.000	20.00	0.000.00	12.00	07.00
5	0.006 46	0 244	35 /3	0.021 72	0 700		0.0.56 44	1.5 1.19	37.02

Table 2 (Continued)

Figure 1. Apparent molar isentropic compressions of alkyl acetates at 25 $^{\circ}\mathrm{C}.$

2. The specific isentropic compression $k_{\rm S}(=-(\partial v/\partial P)_{\rm S})$ of solution can be estimated from the values of u and ρ by the relation

$$k_{\rm S} = 1/(\rho u)^2 \tag{1}$$

The apparent molar isentropic compression $K_{\phi 2}$ of alkyl acetate in solution is given by

$$K_{\phi 2} = (k_{\rm S} - k_{\rm S1})/m + k_{\rm S} M_2 \tag{2}$$

where *m* is molality, M_2 is the molar mass of the acetate, and k_{S1} is the specific compression of solvent water. The estimated $K_{\phi 2}$ values are also summarized in Table 2.

In the concentration range studied, $K_{\phi 2}$ values of alkyl acetates increase linearly with molality; that is

$$K_{\phi 2} = K_{\phi 2}^{\circ} + B_K m \tag{3}$$

where the infinite dilution value $K_{\phi 2}^{\circ}$ is equal to the limiting partial molar isentropic compression K_2° and B_K is an experimental parameter.

Figure 1 shows the concentration dependence of the apparent molar isentropic compressions of eight alkyl acetates at 25 °C. The error bars indicate the uncertainty $\delta K_{\phi 2}$ due to errors in ultrasonic speed measurements, $\delta u = \pm 1 \text{ cm} \text{ s}^{-1}$ and in density estimations, $\delta \rho = \pm 2 \times 10^{-6} \text{ g} \cdot \text{cm}^{-3}$. The parameters K_2° and B_K in eq 3 were evaluated by the method of weighted least squares taking into consideration the uncertainty $\delta K_{\phi 2}$. The results are summarized in Table 3, in which the molar isentropic compressions K_2^* of pure alkyl acetates are also included for comparison.

Although the reliability of the results for butyl acetate isomers is less satisfactory because of the very low solubility in water, it is apparent that the B_K values increase with the chain length of alkyl acetates. This tendency is the same, on the whole, as that observed for alcohols. It should, however, to be noted that the B_K values for the alkyl acetates are positive over the temperature range studied, while negative B_K values were observed at lower temperatures for the shorter-chain alcohols, i.e., methyl, ethyl, and isopropyl alcohols (Sakurai et al., 1995).

Table 3. Molar Isentropic Compressions K_2^* , Limiting Partial Molar Isentropic Compressions K_2° , and B_K Parameters for Alkyl Acetates in Water

	$K_{2}^{*}/$	$K_2^{\circ}/$	Bĸ/
t/°C	cm ³ ·mol ⁻¹ ·GPa ⁻¹	cm ³ ·mol ⁻¹ ·GPa ⁻¹	cm ³ ·kg·mol ⁻² ·GPa ⁻
			0
~	F0 77	Methyl Acetate	7 5 (0, 1) 2
3	52.77	$-17.30(0.03)^{a}$	7.5(0.1) ^a
15	58.56	-3.78(0.04)	5.9(0.2)
25	65.22	6.27(0.03)	4.3(0.1)
35	72.92	13.53(0.04)	4.6(0.1)
45	81.82	19.86(0.01)	4.2(0.1)
		Ethyl Acetate	
5	68.96	-21.28(0.06)	11.8(0.2)
15	76.43	-4.95(0.06)	9.5(0.3)
25	84.95	7.56(0.04)	6.7(0.2)
35	94.73	16.59(0.03)	7.0(0.1)
45	105.96	24.45(0.05)	6.8(0.2)
		Deres 1 A set sta	
~	70 50	Propyl Acetate	10 1(0 0)
3	79.50	-26.62(0.03)	18.1(0.2)
15	87.59	-7.32(0.06)	14.8(0.3)
25	96.74	6.93(0.03)	12.9(0.2)
35	107.11	18.07(0.06)	14.0(0.4)
45	118.88	27.68(0.05)	14.2(0.4)
		Isopropyl Acetate	
5	90.73	-22.12(0.03)	15.2(0.2)
15	100.63	-3.46(0.04)	13.1(0.2)
25	111.91	10.40(0.05)	12.0(0.3)
35	124.81	21.40(0.02)	11.4(0.2)
45	139.60	30.72(0.05)	11.8(0.4)
		Putul Acctato	
5	00 07	22 P(0, 2)	22(4)
15	00.07	-33.0(0.2)	32(4)
15	97.31	-12.2(0.2)	34(3) 90(5)
25	100.77	5.7(0.2)	26(5)
35	117.30	18.9(0.3)	29(9)
45	129.26	29.7(0.2)	54(6)
		Isobutyl Acetate	
5	96.57	-30.5(0.1)	30(3)
15	106.15	-8.5(0.3)	25(8)
25	116.88	7.8(0.1)	28(2)
35	129.01	21.2(0.2)	27(6)
45	142.65	31.9(0.2)	49(6)
		sec-Butyl Acetate	
5	00.04	-26 6(0.1)	34(3)
15	109.04	-18(0.2)	34(J) 20(7)
15	100.91	-4.0(0.3) 11.2(0.2)	20(7)
20	120.02	11.3(0.2) 94.1(0.2)	24(4) 20(7)
33 45	132.37	23 A(0 2)	20(7) 10(6)
45	140.70	55.4(0.2)	49(0)
		tert-Butyl Acetate	
5	106.88	-23.4(0.2)	36(3)
15	118.35	-1.9(0.2)	24(4)
25	131.35	13.6(0.1)	16(3)
35	146.12	26.3(0.3)	28(6)
45	162.95	35.2(0.3)	49(8)

^a Standard deviations are in parentheses.

The negative excess volume of mixing, which is wellknown for many aqueous systems, is ascribed principally to the small size of the water molecules and only indirectly to the structural change of solvent water (Lee, 1983; Sakurai, 1987). The compression behavior is very similar to the volume change; that is, the partial molar isentropic compressions of alkyl acetates are much smaller than the molar compressions of neat acetates and become even negative at lower temperatures. The same is true for the aqueous alcohol systems reported previously (Sakurai et al., 1995). As well as a negative excess volume, the negative compression change on mixing may be also explained primarily by the packing effect due to the difference in size between solute and solvent molecules.

In Figure 2 is shown the temperature dependence of the limiting partial molar isentropic compressions of the *n*-

Figure 2. Temperature dependence of the limiting partial molar compressions of *n*-alkyl acetates: (\bigcirc) MeAc; (\Box) EtAc; (\diamond) PrAc; (\triangle) BuAc.

Figure 3. Methylene group contributions to the partial molar volumes (A) and partial molar isentropic compressions (B): (\bigcirc) N = 1; (\square) N = 2; (\triangle) N = 3. Filled symbols refer to the corresponding molar quantities for neat alkyl acetates.

alkyl acetates in water. The close analogy between the present results and those for alcohols reported previously is very striking; in both cases the increase in chain length brings about more negative K_2° values at lower temperatures, and more positive values at higher temperatures (Nakajima et al., 1975; Høiland, 1980; Sakurai et al., 1995). This means that the methylene group contribution to the partial molar compression $K^{\circ}(CH_2)$ is negative at lower temperatures. The values of $K^{\circ}(CH_2)$ can be obtained from the subtraction process

$$K^{\circ}(CH_2) = K^{\circ}(N+1) - K^{\circ}(N)$$
 (4)

where $K^{\circ}(N)$ refers to the partial molar isentropic compression of *n*-alkyl acetate containing *N* carbon atoms in the alkyl residue. The $K^{\circ}(CH_2)$ values for N = 1 to 3 are illustrated as a function of temperature in Figure 3B, in which analogous methylene contributions $K^*(CH_2)$ estimated from the molar isentropic compressions of neat alkyl acetates are also described by filled symbols. It should be stressed that a change of sign of the $K^{\circ}(CH_2)$ itself has no special meaning, but we shall call attention to much smaller $K^{\circ}(CH_2)$ values at all temperatures and, particularly, to their large temperature dependence compared with $K^*(CH_2)$. A similar behavior can be seen in the methylene contribution to the partial molar volume illustrated in

Figure 4. Temperature dependences of the molar isentropic compressions K_2^* (filled symbols) and limiting partial molar isentropic compressions K_2° (open symbols) of butyl acetate isomers: (\bigcirc) BuAc; (\square) *i*-BuAc; (\triangle) *s*-BuAc; (\bigtriangledown) *t*-BuAc.

Figure 3A; that is, the $V^{\circ}(CH_2)$ is smaller and its temperature dependence (partial molar expansion of methylene group) is larger than the molar quantities calculated from the molar volumes of pure alkyl acetates (Sakurai et al., 1996). Both volume and compression properties of the methylene groups of the alkyl acetate series are just the same as those observed for aqueous alcohol systems.

Consequently, it is apparent that the introduction of the methylene group in water results in solutions that have less volume and are more expansive and less compressible. These changes should be associated with the well-known volumetric properties of solvent water; i.e., more volume, less expansive, and more compressive at ambient temperature due to the formation of tetrahedral liquid structure. However, it does not necessarily follow that the structure of water must be altered by the dissolution of hydrophobic groups. The transfer of a nonpolar group from nonpolar medium to water is accompanied by negative volume and compressibility changes that can be attributed to reduced free volume around the nonpolar group because of the small size (Lee, 1983) and strong cohesive energy density of solvent water (Masterton, 1954). Since there is no appreciable interaction between a nonpolar group and water, the application of heat facilitates the increase in the free volume and results in larger partial molar expansion of nonpolar groups.

It is known that many thermodynamic properties of aqueous solutions are influenced by the chain branching of an alkyl chain through its water-structuring effect (Franks and Reid, 1973). The well-known example is tertbutyl alcohol. Its dilute solution exhibits outstanding characteristics in partial molar volume and, especially, in thermal expansion behavior (Sakurai, 1987). Strange to say, however, our previous results of various alcohol + water systems showed that the chain branching has only a minor effect on the partial molar compression and its temperature dependence (Sakurai et al., 1995). On the other hand, the temperature dependences of the partial molar volumes of four butyl acetate isomers are almost the same, and furthermore these are very similar to the molar expansions of neat butyl acetates (Sakurai et al., 1996). As can be seen from Figure 4, with increasing chain branching the partial molar isentropic compressions of butyl acetate isomers increase slightly, but not so markedly as the molar compressions for pure butyl acetates. Particularly to be noted is that the difference in the temperature dependences of K_2° is hardly appreciable for the branched isomers. Thus, both temperature profiles of partial molar compressions and volumes suggest that the chain branching of the alkyl acetates brings about only a minor influence on the hydration behavior.

It is also worthwhile to note the difference in the temperature dependences of K_2° and K_2^{*} ; that is, the K_2° values decrease steeply as the temperature decreases. Obviously such a nonlinear temperature dependence may not arise from hydrophobic groups-water interactions since $K^{\circ}(CH_2)$ values increase linearly with temperature (see Figure 3B). In fact, a similar temperature dependence can be found in hydrophilic solutes such as alkali halides (Sakurai et al., 1981) or various amino acids (Kikuchi et al., 1995; Mizuguchi et al., 1997) and in hydrophobic solutes such as alkylbenzenes (Sakurai, unpublished data). The large and nonlinear temperature dependence of the partial molar compression seems to be essentially characteristic for aqueous mixtures regardless of hydrophobic or hydrophilic solutes, although we cannot offer a clear explanation at present.

Literature Cited

- Franks, F.; Reid, D. S. Thermodynamic Properties. In Water: A Comprehensive Treatise; Franks, F., Ed.; Plenum Press: New York, 1973; Vol. 2, Chapter 5.
- Grosso, V. A. D.; Mader, C. W. Speed of sound in pure water. J. Acoust. Soc. Am. 1972, 52, 1442-1446.
- Høiland, H. Partial molal volumes, expansibilities, and compressibilities for aqueous alcohol solutions between 5 °C and 40 °C. J. Solution Chem. **1980**, *9*, 857–66.
- Høiland, H. Partial Molar Compressibilities of Organic Solutes in Water. In Thermodynamic Data for Biochemistry and Biotechnology;

Hinz, H. J., Ed.; Springer-Verlag: Berlin, 1986; Chapter 4.

- Kikuchi, M.; Sakurai, M.; Nitta, K. Partial molar volumes and adiabatic compressions of amino acids in dilute aqueous solutions at 5, 15, 25, 35, and 45 °C. J. Chem. Eng. Data 1995, 40, 935–942.
- Lee, B. Partial molar volume from the hard-sphere mixture model. J. Phys. Chem. **1983**, 87, 112–118.
- Masterton, W. L. Partial molal volumes of hydrocarbons in water solution. J. Chem. Phys. 1954, 22, 1830–1833.
- Mizuguchi, M.; Sakurai, M.; Nitta, K. Partial molar volumes and adiabatic compressibilities of *N*-acetyl-DL-serinamide and *N*-acetyl-L-threoninamide in dilute aqueous solutions. *J. Solution Chem.* **1997**, *26*, 579–594.
- Nakajima, T.; Komatsu, T.; Nakagawa, T. Apparent molal volumes and adiabatic compressibilities of *n*-alkanols and α, ω -alkane diols in dilute aqueous solutions at 5, 25, and 45 °C. 2. Apparent molal adiabatic compressibilities. *Bull. Chem. Soc. Jpn.* **1975**, *48*, 788– 790.
- Sakurai, M. Partial molar volumes in aqueous mixtures of nonelectrolytes. I. t-Butyl alcohol. Bull. Chem. Soc. Jpn. 1987, 60, 1–7.
- Sakurai, M.; Komatsu, T.; Nakagawa, T. The concentration dependence of the apparent molal adiabatic compressibility of electrolytes in water. *Bull. Chem. Soc. Jpn.* **1981**, *54*, 643–647.
- Sakurai, M.; Nakamura, K.; Nitta, K. Volumetric properties of dilute aqueous alcohol solutions at different temperatures. *Bull. Chem. Soc. Jpn.* **1994**, 67, 1580–1587.
- Sakurai, M.; Nakamura, K.; Nitta, K.; Takenaka, N. Sound velocities and apparent molar adiabatic compressions of alcohols in dilute aqueous solutions. J. Chem. Eng. Data **1995**, 40, 301–310.
- Sakurai, M.; Nakamura, K.; Nitta, K. Partial molar volumes of alkyl acetates in water. *J. Chem. Eng. Data* **1996**, *41*, 1171–1175.

Received for review October 7, 1997. Accepted December 2, 1997.

JE970242N